Version 2.0 Mathematics Grade- and Course-Level Expectations

```
Note: This April, 2008 revisions and updates to the March 2007 version 2.0 GLEs includes:
    a.) Minor language revisions
    b.) Updated coding of local and state assessed GLEs and CLEs
    c.) Integrated Math II and III Course Level Expectations
```

The Mathematics Grade and Course Level Expectations outline related ideas, concepts, skills and procedures that form the foundation for understanding and learning mathematics. They provide a framework to bring focus to teaching, learning, and assessing mathematics. The Grade Level Expectations (GLEs) in grades K-8 specify mathematical content that students need to understand deeply and thoroughly for future mathematics learning. The Course Level Expectations (CLEs) for Algebra I, Geometry, and Algebra II, as well as Integrated Math II and Integrated Math III, outline mathematics expectations for students enrolled in both traditional and integrated mathematics programs.

Since the Outstanding Schools Act of 1993, several documents have been developed prior to the 2004 K-12 Grade Level Expectations to aid Missouri school districts in creating curriculum that will enable all students to achieve their maximum potential. Those include:

- The Show-Me Standards which identify broad content knowledge and process skills for all students to be successful as they continue their education, enter the workforce, and assume civic responsibilities
- The Framework for Curriculum Development which provides districts with a "frame" for building curricula using the Show-Me Standards as a foundation
- The Assessment Annotations for the Curriculum Frameworks which identify content and processes that should be assessed at the local and state level in grades 4, 8, and 10 mathematics

Essential content, aligned to state and national documents included in the Grade and Course Level Expectations should be addressed in contexts that promote problem solving, reasoning, communication, making connections, and designing and analyzing representations. Each Grade and Course Level Expectation is aligned to the Show-Me Content and Process Standards (1996). In addition, a Depth-of-Knowledge level has been assigned to each grade or course level expectation. The Depth of Knowledge identifies the highest level at which the expectation will be assessed, based upon the demand of the GLE. Depth-of-Knowledge levels include: Level 1recall; Level 2-skill/concept; Level 3-strategic thinking; and Level 4-extended thinking.

Expectations coded with an asterisk *, indicate that it should be assessed at the local level. Those with no asterisk, indicate an expectation that will be assessed at the state level on a $3^{\text {rd }}-8^{\text {th }}$ grade MAP Assessment or End-of-Course Exam. It is essential to include all expectations in your course or grade level curriculum, as they are important components in the understanding and learning of mathematics.

Sources: College Board Standards for College Success: Mathematics and Statistics (College Board, 2006). Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics (National Council of Teachers of Mathematics, 2007); Indicators of College Readiness within Missouri's Two-Year Colleges (Missouri Development Education Consortium); Depth-of-Knowledge Levels (Norman Webb); Mathematics Engineering Technology \& Science (METS) Alliance Report (2006) Principles and Standards for School Mathematics (National Council of Teachers of Mathematics, 2000); Show-Me Standards (Missouri Department of Elementary and Secondary Education).

April, 2008

Number and Operations

Number and Operations

	Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
D 		*skip count by $2 s, 5 s$ and $10 s$	*skip count by multiples of numbers less than 10	classify numbers by their characteristics, including odd and even	classify and describe numbers by their characteristics, including odd, even, multiples and factors	*describe numbers according to their characteristics, including whole number common factors and multiples, prime or composite, and square numbers			
DOK ST		MA 51.6	MA 51.6	MA 51.6	MA 51.10	MA 51.10			

April, 2008

Number and Operations

April, 2008

Number and Operations

April, 2008

Number and Operations

Number and Operations

April, 2008

Algebraic Relationships

April, 2008

Algebraic Relationships

April, 2008

Algebraic Relationships

April, 2008

Algebraic Relationships

2. Represent and analyze mathematical situations and structures using algebraic symbols -- continued

	Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
C									
DOK									
ST									
D									
ST									

April, 2008

Algebraic Relationships

	Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
			*describe qualitative change, such as students growing taller	*describe quantitative change, such as students growing two inches in a year	* describe mathematical relationships in terms of constant rates of change	*identify, model and describe situations with constant or varying rates of change	* construct and analyze representations to compare situations with constant or varying rates of change	compare situations with constant or varying rates of change	analyze the nature of changes (including slope and intercepts) in quantities in linear relationships
DOK			2	2	2	3	3	3	3
ST			MA 41.6						

Geometric and Spatial Relationshif

Geometric and Spatial Relationshif

April, 2008

Geometric and Spatial Relationshif

April, 2008

Geometric and Spatial Relationshif

April, 2008

Measurement

Measurement

April, 2008

Measurement

2. Apply appropriate techniques, tools and formulas to determine measurements									
	Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
A	*measure objects by comparison of lengths (shorter, same, longer)	*use repetition of a single unit to measure something larger than the unit, (e.g. length of book with paper clips)	*use standard units of measure (cm, inch) and the inverse relationships between the size and number of units	*use a referent for measures to make comparisons and estimates	*select and use benchmarks to estimate measurements (linear, capacity, weight)				
DOK	1	1	2	2	2				
ST	MA 21.6	MA 21.10	MA 21.6	MA 21.6	MA 21.6				
B					*select and use benchmarks to		*identify and justify an angle	*use tools to measure	solve problems of
					estimate measurements of 0-, 45(acute), 90(right) greater than 90 (obtuse) degree angles		as acute, obtuse, straight, or right	angles to the nearest degree and classify the angle as acute, obtuse, right, straight, or reflex	angle measure, including those involving triangles and parallel lines cut by a transversal
DOK					2		2	1	1
ST					MA 21.6		MA 23.2	MA 23.2	MA 23.2
C				determine the perimeter of polygons	determine and justify areas of polygons and	determine volume by finding the total	solve problems involving the area or perimeter	solve problems involving circumference	
					non-polygonal regions imposed on a rectangular grid	number of the same size units needed to fill a space without gaps or overlaps		and/or area of a circle and surface area/volume of a rectangular or triangular prism, or cylinder	
DOK				2	3	2	2	2	
ST				MA 21.10					

April, 2008

Measurement

	Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
D									analyze precision and accuracy in measurement situations and determine number of significant digits
DOK									2
ST									MA 21.7
E						convert from one unit to another within a system	convert from one unit to another within a system	convert from one unit to another within	
						of linear measurement (customary and metric)	of measurement (mass and weight)	a system of measurement (capacity) and convert square or cubic units within the same system of measurement	
DOK						1	1	1	
ST						MA 21.6	MA 21.6	MA 21.6	

April, 2008

Data and Probability

April, 2008

Data and Probability

	Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
				*describe the shape of data and analyze it for patterns	*describe important features of the data set	compare related data sets	find the range and measures of center, including median, mode and mean	find, use and interpret measures of center and spread, including ranges	find, use and interpret measures of center, outliers and spread, including range and interquartile range
DOK				2	2	2	2	2	2
ST				MA 31.6	MA 31.6	MA 31.6	MA 31.10	MA 31.10	MA 31.10
B 									compare different representations of the same data and evaluate how well each representation shows important aspects of the data
DOK									3
ST									MA 31.10
C									
DOK									
ST									

April, 2008

Data and Probability

April, 2008

Data and Probability

Jnderstand and apply basic concepts of probability									
	Kindergarten	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
						*describe the degree of likelihood of events using such words as certain, equally likely and impossible	use a model (diagrams, list, sample space, or area model) to illustrate the possible outcomes of an event	use models to compute the probability of an event and make conjectures (based on theoretical probability) about the results of experiments	
DOK						2	2	MA3 3	
ST						MA 31.10	MA 3 1.10, 3.2	MA 33.8	
B									
DOK									
ST									

April, 2008

